Effects of shielding gas compositions on arc plasma and metal transfer in gas metal arc welding
نویسندگان
چکیده
This article presents the effects of shielding gas compositions on the transient transport phenomena, including the distributions of temperature, flow velocity, current density, and electromagnetic force in the arc and the metal, and arc pressure in gas metal arc welding of mild steel at a constant current input. The shielding gas considered includes pure argon, 75% Ar, 50% Ar, and 25% Ar with the balance of helium. It is found that the shielding gas composition has significant influences on the arc characteristics; droplet formation, detachment, transfer, and impingement onto the workpiece; and weld pool dynamics and weld bead profile. As helium increases in the shielding gas, the droplet size increases but the droplet detachment frequency decreases. For helium-rich gases, the current converges at the workpiece with a “ring” shape which produces non-Gaussian-like distributions of arc pressure and temperature along the workpiece surface. Detailed explanations to the physics of the very complex but interesting transport phenomena are given. © 2010 American Institute of Physics. doi:10.1063/1.3291121
منابع مشابه
Occupational HazardsOccupational Hazards
HUNDREDS OF THOUSANDS of people work in welding, cutting and brazing. It is estimated that welders compose 1 to 2% of the U.S. working population, including a significant segment of the aging workforce. According to OSHA’s Christine Petitti, the most commonly used welding processes are: 1) Flux-cored arc welding (FCAW). This process uses an arc between a continuous filler metal electrode and th...
متن کاملHeat and mass transfer in gas metal arc welding. Part I: The arc
A unified comprehensive model was developed to simulate the transport phenomena occurring during the gas metal arc welding process. An interactive coupling between arc plasma; melting of the electrode; droplet formation, detachment, transfer, and impingement onto the workpiece; and weld pool dynamics all were considered. Based on the unified model, a thorough investigation of the plasma arc cha...
متن کاملELECTRODE EFFECT ON FLOW CONDITIONS IN ARGON GAS METAL ARE MODELING
A two dimensional mathematical model has been developed for describing the temperature, flow, and electric fields in the are column of the Gas Metal Arc Welding (GMAW) of aluminum in argon shielding gas using axisymmetric Navier-Stokes, Maxwell, and differential thermal energy equations. The predicted results are most sensitive to the cathode spot radius and an optimum cathode spot radius exist...
متن کاملMetal Transfer and Arc Plasma in Gas Metal Arc Welding
This article analyzes the transient complex heat transfer and fluid flow in molten metal and arc plasma during the gas metal arc welding process. The model predicts the formation, growth, detachment, and transfer of droplets from the tip of a continuously fed electrode under the influences of several competing forces including gravity, electromagnetic force, arc pressure, plasma shear stress, a...
متن کاملGas tungsten arc welding
Gas tungsten arc welding (GTAW), also known as tungsten inert gas (TIG) welding, is an arc welding process that uses a nonconsumable tungsten electrode to produce the weld. The weld area is protected from atmospheric contamination by a shielding gas (usually an inert gas such as argon), and a filler metal is normally used, though some welds, known as autogenous welds, do not require it. A const...
متن کامل